Şimdilik Hoşça Kal Growth Hacking! Merhaba Veri Madenciliği!

Growth Hacking Konusunu Şimdilik Sonlandırıyoruz

Growth Hacking konusu hakkında birçok yazı paylaşmıştım sizinle. Artık Growth Hacking konusunu sonlandırıyoruz. Ama şimdilik. Bu konuyla ilgili son 7gelişmeler, trendler ve uygulamalarla ilgili yazıları paylaşmaya devam edeceğim. Yani yazılarda anlatılmak isteneni kavradıysanız Growth Hacking’in bir sonunun olmadığını ve her zaman yeni şeylerin keşfedildiğini anlamışsınızdır. Dolayısıyla bu konu ile ilgili paylaşımların sonunun gelmesi hiçbir şekilde mümkün değil.

Ancak ana odağı artık başka bir konuya kaydırıyorum: Veri Madenciliği. Son zamanlarda çok popülerleşmeye başlayan bir kavram aslında. “Bu da nedir?” diye merak mı ediyorsunuz? O zaman sizi aşağıya doğru alalım.

Giriş

5Bilgi Endüstrisinde (Information Industry) çok büyük miktarlarda veri bulunuyor.  Anlamlı ve kullanışlı bir bilgiye (information) dönüştürülmediği müddetçe bu verinin hiçbir anlamı yok. Böylesine büyük bir veriyi analiz etmek ve anlamlı bilgiler çıkarmak artık bir zorunluluk haline geldi.

Bilgi çıkarma işlemi yapmamız gereken tek işlem değil, bu süreç aynı zamanda Veri Temizleme (Data Cleaning), Veri Entegrasyonu (Data Integration), Veri Dönüştürme (Data Transformation), Veri Madenciliği (Data Mining), Örüntü Değerlendirme (Pattern Evaluation) ve Veri Sunumu (Data Presentation) gibi işlemleri de içermekte. Bu işlemlerin hepsi yapıldıktan sonra, elde ettiğimiz bilgileri artık Sahtekarlık Tespiti (Fraud Detection), Pazar Analizi (Market Analysis), Üretim Kontrolü (Production Control) vb. birçok alanda kullanabiliriz.

Veri Madenciliği Nedir ?

Veri madenciliği basitçe tanımlayacak olursak büyük veri setlerinden anlamlı ve kullanışlı bilgiler çıkarma(elde etme) sürecidir. Yani aslında kelim3e anlamı gibi, veriyi çok büyük bir maden olarak düşünürsek bu madeni kazıyarak içindeki değerli maddeleri bulmaya çalışıyoruz. Bulduğumuz bilgileri şu alanlarda kullanabiliriz:

  • Pazar Analizi
  • Pazarlama stratejilerinin verimliliği
  • Belirli bir pazarlama stratejisi için büyük bir müşteri veri tabanından hangi müşterilerin hedef olarak seçileceğinin belirlenmesi
  • Müşteri yaşam döngüsünü yönetme ve müşteriyi elde tutma
  • Sahtekarlık Tespiti
  • Üretim Kontrolü

“Söyle bana, neler olabilir” Rolü

Veri madenciliğinin ilk rolü veriye “söyle bana, neler olabilir” dediğiniz tahminleme rolüdür. Veri ambarınızda (data warehouse) 6kilitli bir şekilde duran gizli bilgileri açığa çıkarıyoruz.

“Bana ilginç bir şey söyle” Rolü

Tahminlemeye ek olarak, veri madenciliği daha önceden bilmediğiniz ilginç bilgileri elde etmek için de kullanılır. Örneğin, iki ürünün satışı arasında olağan dışı bir ilişkinin olması ve bu ilişkinin bu iki ürünü yerleştirme biçiminize göre nasıl değiştiğini fark etmek.

Neden Veri Madenciliğine İhtiyaç Duyuluyor ?

Bilgi Teknolojilerindeki gelişmelerden kaynaklanan bir veri bolluğuna sahibiz. Büyük Veri veya daha sevdiğim bir tabiriyle İri Veri (Big Data) kavramının2 ortaya çıktığı yer de burası aslında. Artık veri çok yüksek hızlarda, çok yüksek hacimlerde ve çok çeşitli şekillerde (resim, müzik, yazı, vs.) geldiğinden bu verilerden anlamlı bir bilgi çıkartmak gerekiyor.

Bu çıkartılan bilgiler karar almada büyük bir rol oynamakta ve rekabet avantajı sağlamakta.

Pazar Analizi ve Yönetim

  • Müşteri Profilleme: Kimler hangi tür ürünleri alıyor.1
  • Müşteri Gereksinimlerini Tespit Etme: Müşteriye göre ürün belirleme. Hangi faktörler müşterileri çekiyor?
  • Çapraz Pazar Analizi: Farklı ürün satışları arasındaki Birliktelik (Association) ve İlişki (Correlation)
  • Hedef Pazarlama: Müşterileri ortak karakteristiklere göre kümeleme.
  • Müşteri Satın Alma Örüntüsünü Belirleme: Müşterilerin satın alma biçimlerini belirleme.

Kurumsal Analiz ve Risk Yönetimi

  • Finansal Planlama ve Varlık Değerlendirmesi: Nakit akışı analizi ve tahminleme.
  • Kaynak Planlama: Özetleme, kaynakları karşılaştırma ve harcamaları asgari düzeye indirme.
  • Rekabet: Rakipleri gözetleme ve pazar trendlerini belirleme

Sahtekarlık Tespiti

Kredi kart servisleri ve telekomünikasyon sektöründe sahtekarlıkları tespit etmek.

Neler Göreceğiz ?

Veri madenciliği alanı istatistik, yapay zeka, veri tabanı ve veri ambarı konularıyla bağlantılı olduğu için bu alanlarla ilgili konuları ele alacağız ve inceleyeceğiz. Dalışa hazır mısınız?

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s