İstatistiksel Öğrenme II – Modelin Netliğini Değerlendirme

15statistik ne yazık ki kesin kuralları olan bir disiplin değil. Herhangi bir metot bir veri setinde çok iyi sonuçlar üretebilirken başka bir veri seti üzerinde çok kötü sonuçlar üretebilir. Bu yüzden belirli bir veri seti üzerinde en iyi performansı veren metodu bulabilmek çok önemli bir konu. Pratikte istatistiksel öğrenmenin en çetrefilli olayı da tam olarak budur: doğru yaklaşımı ve metodu belirlemek. Bu yazıda, belirli bir veri seti için en iyi sonucu üreten istatistiksel öğrenme prosedürünü seçmemizde bize yol gösterecek birkaç önemli konsepti inceleyeceğiz.

Uyum Kalitesinin Ölçümü 

Bir istatistiksel öğrenme metodunun belirli bir veri seti üzerindeki performansını değerlendirmek için metodun ürettiği tahminlerin gerçek sonuçlarla ne kadar örtüştüğünü ölçümlememize yarayacak yöntemlere ihtiyacımız var. Yani, belirli bir gözlem için tahmin edilen cevap(reponse) değerin o gözlemin gerçek cevap(reponse) değerine ne kadar yakın olduğunu sayısallaştırmamız gerekiyor. Regresyon için, en yaygın olarak kullanılan ölçüm Ortalama Karesel Hata (Mean Squared Error-MSE)‘dır ve şu şekilde ifade edilir:

MSE

Burada 6(xi) 6‘in i numaralı gözlem için ürettiği tahmini gösteriyor. Tahmin edilen değerler gerçek değerlere ne kadar yakınsa MSE o kadar küçük olur; gerçek değerlerden ne kadar uzaklaşırsa MSE o kadar büyük olur. Yukarıda MSE, modeli uydurmak(model fitting) için kullanılan training veri seti kullanılarak hesaplanır ve training MSE olarak ifade edilmelidir. Fakat genellikle, metodumuzun training veri seti üzerinde ne kadar iyi sonuçlar ürettiğiyle ilgilenmeyiz. Bilakis training veri seti dışındaki verilerde(test) modelin ne kadar kesin sonuçlar ürettiğiyle ilgileniriz. Peki neden durum böyle?

Düşünün ki geçmişteki stok getirilerini kullanarak gelecekteki stok getirilerini tahminlemeye yaracak bir algoritma yaratmaya çalışıyoruz. Metodu geçtiğimiz 6 ay içindeki stok getirilerini kullanarak eğitiyoruz(train). Ancak metodumuzun geçtiğimiz haftaki stok getirilerini ne kadar iyi tahminlediğiyle ilgilenmeyiz pek. Daha ziyade gelecek hafta veya aydaki stok getirilerini ne kadar iyi tahmin edebileceğiyle ilgileniriz. Veya düşünün ki elimizde birçok hastanın klinik ölçüm verileriyle (kilo, kan basıncı, boy, yaş, aile geçmişi, vb.) diyabet olup olmadığına dair veriler olsun. Bu hastaların verilerini bir hastanın klinik verilerini kullanıp diyabet olup olmadığını tahminlemeye yarayacak bir istatistiksel öğrenme metodunu eğitmek(train) için kullanabiliriz. Pratikte, bu metodu belirli bir hastanın klinik verilerinden yola çıkarak diyabete yakalanma riskini tahmin etmede kullanabiliriz. Bu metodun, metodu eğitmek için kullandığımız hastaların diyabet olup olmadığını ne kadar iyi tahmin ettiğiyle ilgilenmeyiz çünkü zaten bu hastaların gerçekten diyabet olup olmadığını biliyoruz. Daha matematiksel ifade etmek gerekirse, düşünün ki istatistiksel öğrenme metodumuzu training veri setine uydurduk(fit) ve bir 6 tahmini ürettik. Bu 6‘i kullanarak 6(x1), 6(x2),…..,6(xn)‘i hesapladık. Eğer bunlar gerçek y1, y2,…..,yn değerlerine yaklaşık olarak eşitse MSE değeri o kadar küçük olacaktır. Fakat gerçekten 6(xi)~yi olup olmadığıyla ilgilenmeyiz. Daha önce görmediğimiz bir veri üzerinde(x0) modelimizin ne kadar gerçeğe yakın tahmin yaptığıyla ilgileniriz: 6(x0)~y0. Peki test MSE değerini minimum yapacak metodu nasıl bulacağız? Bazı durumlarda test veri seti hazır olarak verilmiş olabilir. O zaman modelimizi training veri setini kullanarak uydururuz(fit) ve sonrasında test veri seti üzerinde çalıştırarak sonuçlarına bakıp MSE’i hesaplarız; mininum test MSE değerini üreten metodu seçeriz. Fakat eğer test veri seti yoksa ne yapacağız? Bu durumda, training MSE değerini minimize edecek istatistiksel metodu seçmeyi düşünebiliriz. Genellikle training MSE ile test MSE yakından alakalı olduğu düşünüldüğü için oldukça mantıklı bir yöntem gibi gözüküyor olabilir. Ne yazikki bu stratejiyle ilgili temel bir problem var: minimum training MSE değerini üreten metodun minimum test MSE değerini üreteceğine dair hiçbir garanti yok. Açık olmak gerekirse çoğu istatistiksel öğrenme metodu özellikle training MSE değerini minimize edecek katsayılar(coefficients) üretecek şekilde optimize edilmiş ve tasarlanmıştır. Bu metotların düşük trainin MSE değerleri üretmesi gayet normal, ancak sıklıkla test veri seti üzerine uygulandıklarında daha büyük test MSE değerleri üretirler.

Örnek 1

Örnek 1

Yukarıdaki grafiği inceleyerek bu durumu açıklayalım. Sol taraftaki grafikte siyah ile çizilmiş eğri bizim gerçek 7 fonksiyonumuzu gösteriyor. Turuncu çizgi ile mavi ve yeşil eğriler ise bizim gerçek 7 fonksiyonu için tahminlerimizi göstersin ve bunların esnekliği(flexibility) sırasıyla artıyor olsun; yani mavi turuncudan, yeşil de maviden daha esnek olsun. Turuncu çizgi “linear regression” metodu ile elde edilen tahmindir; yani esnekliği görece azdır. Mavi ve yeşil eğriler ise ilerideki konularda ayrıntılı ele alacağımız “smoothing splines” metodu kullanılarak elde edilen tahminlerdir ve bu eğriler farklı düzleme seviyeleri (level of smoothing) kullanılarak üretilmişlerdir. Grafiğe dikkatli baktığımızda göreceğimiz üzere esneklik seviyesi arttıkça eğri gözlemlenen veriye daha çok uyum sağlar (fit). Yeşil eğri en esnek olan eğridir ve gözlemlenen veriye en çok uyumu sağlamıştır. Fakat, bu eğrinin gerçek 7 eğrisine çok da benzemediğini görüyoruz; çünkü gereğinden fazla kıvrımlı. Smoothing spline fit metodunun esneklik seviyesini değiştirerek aynı veriye bir çok farklı eğri uydurabiliriz.

Sağ taraftaki grafikte gri eğri ortalama training MSE değerini esnekliğin  bir fonksiyonu olarak göstermekte. Burada esneklik kavramı istatistiki jargonda serbestlik derecesi(degree of freedom) olarak adlandırılır. Turuncu, mavi ve yeşil kareler sol taraftaki ilgili eğrinin MSE değerlerini belirtmekte. Daha kısıtlayıcı ve dolayısıyla daha düz(smooth) eğriler daha kıvrımlı olanlara nazaran daha az serbestlik derecesine (degree of freedom) sahiptir. Training MSE değeri esneklik arttıkça monoton olarak azalır. Bu örnekte gerçek 7 doğrusal değil, ve bu yüzden turuncu çizgi gerçek 7‘i yeterince iyi tahminleyecek esnekliğe sahip değil. Yeşil eğri en düşük training MSE değerine sahip çünkü içlerinden en esnek olanı o. Bu örnekte gerçek 7 fonksiyonunu biliyoruz ve böylece test MSE değerlerini çeşitli esneklik seviyeleri için hesaplayabiliyoruz. (Elbette pratikte gerçek 7 fonksiyonu genellikle bilinmez; dolayısıyla bu örnekte yapacağımız hesaplamayı yapmak mümkün olmaz). Test MSE değeri sağ tarafta kırmızı eğri ile gösterilmekte. Esneklik seviyesi arttıkça training MSE değerine paralel olarak test MSE değeri en başta azalmakta, belli bir noktada test MSE değeri minimum olmakta ve o noktadan sonra test MSE değeri tekrar artmakta. Bu nedenle, turuncu ve yeşil eğriler yüksek test MSE değerine sahip. Mavi eğri test MSE değerini minimize etmekte ve sol taraftaki görselde de görülebileceği üzere zaten görsel olarak gerçek 7‘i en iyi tahmin eden de bu. Yatay kesikli çizgi azaltılamayan hatayı (irreducible error) Var(e) gösteriyor ve bu da bütün metotların ulaşabileceği minimum test MSE değeri anlamına geliyor. Dolayısıyla, mavi eğri ile gösterilen smoothing spline tahmini optimuma yakın bir tahmin.

Yukarıdaki görselin sağ tarafındaki grafikte görebileceğiniz üzere istatistiksel öğrenme metodunun esnekliği arttıkça training MSE değerinde monoton bir azalma gözlemlerken test MSE değerinde U şekli gözlemliyoruz. Bu durum, eldeki veriden ve kullanılan istatistiksel metottan bağımsız olarak istatistiksel öğrenmenin temel bir özelliğidir. Model esnekliği arttıkça, training MSE hep azalır ancak test MSE hep azalmayabilir. Bir metot düşük training MSE değeri üretirken yüksek test MSE değeri üretiyorsa, bu durum elimizdeki veriye “aşırı uydurma” veya tam adıyla “overfitting” yapıyoruz demektir. Bunun sebebi elimizdeki istatistiksel öğrenme prosedürünün training veri setindeki örüntüyü (pattern) çok yakından takip etmesidir ve bu örüntülerden bazıları gerçek 7 fonksiyonunun özelliğinden kaynaklanmayıp tamamıyla şans eseri oluşan örüntülerdir. Training verisine “aşırı uydurma” yaptığımızda, test MSE değeri çok büyük olacaktır çünkü training verisinde bulduğumuzu sandığımız örüntüler(rastgele hatalardan kaynaklanan) test verisinde bulunmayacaktır. Şunu da not etmek gerekiyor ki aşırı uydurma yapalım ya da yapmayalım, neredeyse her zaman training MSE değerinin test MSE değerinden düşük olmasını bekleriz çünkü çoğu istatistiksel öğrenme metodu direkt ya da dolaylı olarak training MSE değerini minimize etmek için tasarlanmıştır. 

 1

Örnek 2

Yukarıdaki grafik gerçek 7‘in yaklaşık olarak doğrusal olduğu başka bir örneği gösteriyor. Gene esneklik arttıkça, training MSE değerinin monoton olarak azaldığını, test MSE değerinin ise U şekli çizdiğini görüyoruz. Fakat, gerçek 7 fonksiyonu doğrusala yakın bir fonksiyon olduğundan, test MSE artmadan önce çok az bir miktarda azalıyor; dolayısıyla turuncu least square fit yüksek miktarda esnek olan yeşil eğriden daha iyi tahminleme yapıyor.

Aşağıdaki figür ise gerçek 7 fonksiyonunun doğrusal olmadığı bir örneği gösteriyor. Training ve test MSE eğrileri aynı davranışı(yani training azalırken test MSE değeri U şekli çiziyor) gösteriyor fakat bu sefer test MSE değeri artmaya başlamadan önce her iki eğride de hızlı bir düşüş gözlemleniyor.

2

Örnek 3

Pratikte genellikle sadece training MSE değerini hesaplayabiliriz; test MSE değerini hesaplamak çok daha zordur çünkü genellikle test verisi elimizde yoktur. Yukarıdaki üç örnekten görebileceğiniz üzere, minimum test MSE değerini üreten modelin esneklik seviyesi veri setinden veri setine ciddi derecede farklılık gösterebiliyor. Bu minimum test MSE noktasını hesaplamak için bir çok yöntem var. Bunlardan en yaygını cross-validation. İleriki yazılarda ayrıntılı olarak inceleyeceğimiz için şimdilik burada duralım.

Taraflılık-Varyans Dengesi (Bias-Variance Trade-off)

Test MSE değerinde gözlemlediğimiz U şekli istatistiksel öğrenme metotlarının birbirleriyle rekabet içinde olan iki özelliğinden kaynaklanıyor. Matematiksel kanıtlamayı burada yapmaya kalkarsak yazının amacını çok aşmış oluruz, fakat beklenen(expected) test MSE değerinin her zaman üç temel miktarın toplamına eşit olduğunu söyleyelim:

3

Burada  4 beklenen(expected) test MSE değerini gösteriyor ve bu da bir sürü farklı training veri seti kullanılarak hesaplanan 6‘erin test setleri üzerindeki MSE değerlerinin ortalamasına tekabül ediyor.

Bu denklem bize şunu diyor aslında: beklenen test hatasını minimize etmek için, aynı anda hem düşük varyansa hem de düşük taraflılığa(bias) erişebilen bir istatistiksel öğrenme metodu seçmemiz gerekiyor. Dikkat edilmesi gereken konu şu ki varyans yapısı gereği her zaman sıfıra eşit ya da pozitiftir ve karesi alınmış taraflılık(bias) da hiçbir zaman negatif olamaz. Bu yüzden, beklenen test MSE değeri asla 5‘nin yani azaltılamaz hatanın (irreducible error) altına inemez.

Bir istatistiksel öğrenme metodunun taraflılığı ve varyansı derken tam olarak neden bahsediyoruz? Varyans 6‘in farklı training veri setleri kullanılarak hesaplandığında ne kadar değiştiği ile ilgilidir. Training veri seti istatistiksel öğrenme metodunu uydurmak(fit) için kullanıldığından, farklı training veri setleri farklı 6‘ler üretecektir. Fakat ideal olarak gerçek 7 için olan tahminimizin farklı training veri seti kullandığımızda çok fazla değişmemesi gerekir. Eğer bir metot yüksek varyansa sahipse o zaman training veri setindeki küçük değişiklikler bile tahminimiz olan 6‘te büyük değişikliklere sebep olur. Genel olarak, daha esnek istatistiksel metotlar daha yüksek varyanslara sahiptir. Örnek 1‘deki yeşil ve turuncu eğrileri gözlemleyin. Esnek yeşil eğri gözlemleri çok yakından takip ediyor. Bu eğri yüksek bir varyansa sahip çünkü gözlemlerden herhangi birini değiştirdiğimizde hesapladığımız 6 fonksiyonu ciddi derecede değişir. Diğer yandan, turuncu “least squares” çizgisi ise göreceli olarak daha az esnektir ve dolayısıyla daha düşük varyansa sahiptir çünkü herhangi bir gözlemi değiştirdiğimizde bu değişiklik fonksiyonumuzda çok çok ufak bir değişikliğe neden olacaktır.

Taraflılık(bias) ise gerçek hayattaki bir problemi yaklaşık olarak olarak modellediğimizde modelimizin sebep olduğu hatadır. Bu hata seçtiğimiz model basitleştikçe artış gösterir. Örneğin, linear regression Y ve X1,X2, . . . , Xp arasında doğrusal bir ilişki olduğunu var sayar. Gerçek hayatta karşılaştığımız herhangi bir problemin böylesine basit bir doğrusal ilişkiye sahip olması çok az rastlanılan bir durumdur. Dolayısıyla linear regression 7‘i tahminlemede şüphesiz bir biçimde bir miktar taraflılığa sebep olacaktır. Örnek 3‘te gerçek 7 doğrusal değildir, bu yüzden ne kadar training verisine sahip olursak olalım linear regression kullanarak net bir tahmin yapmamız mümkün değil. Diğer bir deyişle linear regression bu örnekte yüksek taraflılığa sebep oluyor. Fakat Örnek 2‘de gerçek 7 doğrusala çok yakın ve dolayısıyla elimizde yeterince veri olduğunda linear regression kullanarak net bir tahmin elde etmemiz mümkün. Genel olarak, daha esnek metotlar daha az taraflılığa sebep olur.

Genel bir kural olarak, daha esnek metotlar kullandığımızda varyans artarken taraflılık azalacaktır. Test MSE değerinin artmasını ya da azalmasını belirleyen etmen bu iki miktarın göreceli değişimidir. Esnekliği artırdığımızda taraflılık en başlarda varyansın artış hızından daha hızlı bir şekilde düşecektir. Sonuç olarak beklenen test MSE değeri de düşecektir. Ancak, belirli bir noktadan sonra esnekliği artırmak taraflılık üzerinde çok düşük miktarda etki gösterecektir ve varyansı ciddi derecede artırmaya başlayacaktır. Bu olduğunda test MSE değeri artış gösterir. Bu olay yukarıdaki 3 örneğin sağ tarafındaki grafiklerde gösteriliyor.

8

Yukarıdaki görseldeki üç grafik 1.,2. ve 3. örneklerimiz için beklenen test MSE değeri denklemimiz için sonuçlarını gösteriyor. Mavi eğri çeşitli esneklik seviyeleri için karesel taraflılığı (squared-bias), turuncu eğri de varyansı gösteriyor. Kesikli yatay çizgi ise azaltılamaz hatayı5, gösteriyor. Kırmızı eğri ise bu üç miktarın toplamını yani beklenen test MSE değerini gösteriyor. Her üç örnekte de metodun esnekliği arttıkça varyans artıyor ve taraflılık azalıyor. Fakat, minimum test MSE değerine karşılık gelen esneklik seviyesi her örnek için ciddi derecede farklılık gösteriyor çünkü karesel taraflılık ve varyans hepsinde farklı hızlarlarla değişiklik gösteriyor. Soldaki grafikte en başlarda taraflılık varyansın değişim hızına kıyasla çok hızlı bir şekilde azalıyor ve dolayısıyla test MSE değerinde düşüşe sebep oluyor. Fakat ortadaki grafikte gerçek 7 doğrusala yakın olduğundan esneklik arttıkça taraflılıkta çok az bir azalmaya neden oluyor ve test MSE değeri çok az miktarda azalıyor ve sonrasında varyans arttığı için hızla artmaya başlıyor. Ve sağ taraftaki grafikte ise esneklik arttıkça taraflılıkta çok ciddi bir azalma oluyor çüknü gerçek 7 bu örnekte doğrusal olmaktan çok uzak. Ayrıca esneklik arttıkça varyansta da çok az bir artış gözlemleniyor. Sonuç olarak, test MSE değeri çok ciddi miktarda azalıyor ve belirli bir noktadan sonra çok az artış gösteriyor.

Bu durum taraflılık-varyans dengesi (bias-variance trade-off) olarak adlandırılıyor. Bir istatistiksel öğrenme metodunun düşük test MSE değeri üretebilmesi için hem düşük varyansa hem de düşük karesel taraflılığa sahip olması gerekiyor. Bu denge olarak ifade ediliyor çünkü son derece düşük taraflılığı olup son derece yüksek varyansa sahip bir metot veya tam tersini elde etmek kolay. Buradaki zorlayıcı nokta hem varyansı hem de karesel taraflılığı düşük olan bir metot bulmak.

Gerçek hayatta gerçek 7‘i genellikle bilmeyiz. Bu yüzden bir istatistiksel öğrenme metodunun test MSE değerini, taraflılığını ve varyansını hesaplamak çoğu zaman mümkün değildir. Yine de taraflılık-varyansa dengesini göz önünde bulundurmamız gerekiyor. Bunları nasıl hesaplayacağımıza dair metotları sonraki yazılarda ele alacağız.

Sınıflandırma (Classification) Olayı

Şimdiye kadar model netliğini tartışırken hep regresyona odaklandık. Fakat karşılaştığımız konseptlerin çoğu, mesela taraflılık-varyans dengesi, sınıflandırma metotları için de geçerli. Buradaki tek değişiklik tahmin etmeye çalıştığımız değişkenin artık sayısal bir değişken olmaması. Diyelim ki elimizdeki veri şöyle olsun: {(x1, y1), . . . , (xn, yn)} ve gerçek 7‘i hesaplamaya çalışalım. Burada y değişkeni kalitatiftir. Tahminimizin, 6, netliğini ölçmedeki en yaygın yaklaşım training hata oranıdır (training error rate) ve bu da tahmin ettiğimiz 6‘i training veri setine uyguladığımızda elde ettiğimiz hatalı tahminlerin tüm tahminlere oranıdır.

Capture

Üzerinde şapka olan y i.’ci gözlem için tahminimizi temsil ediyor. I fonksiyonu ise içindeki ifade doğru ise 1 değil ise 0 üretiyor. Dolayısıyla yukarıdaki fonksiyon bize yanlış sınıflandırılan gözlemlerin yüzdesini veriyor.

Burada da gene tahminimizin training veri seti üzerinde ne kadar iyi sonuçlar ürettiğinden ziyade test veri seti üzerinde ne kadar iyi sonuçlar ürettiğiyle ilgileniriz. İyi bir sınıflandırıcı(classifier) test MSE değeri minimum yapandır.

Bayes Sınıflandırıcısı (Bayes Classifier)

Test MSE değeri her bir gözlemi tahmin değişkenlerine bakarak en yüksek olasılıktaki sınıfa atayarak minimize edilir. Diğer bir deyişle x0 tahminleyici değişken vektörüne (yani X1,X2,…,Xp) sahip bir test gözlemini öyle bir j sınıfına atamalıyız ki

Pr(Y = j|X = x0)

değeri maksimum olsun. Bu ifade bir koşullu olasılık (conditional probability)‘dır ve şu şekilde ifade edilir: x0 verildiğinde Y’nin j’ye eşit olma olasılığı. Bu son derece basit sınıflandırıcı Bayes Sınıflandırıcısı(Bayes Classifier) olarak adlandırılır. Yalnızca iki sınıftan(sınıf1, sınıf2) oluşan problemlerde Bayes Sınıflandırıcısı bir gözlemi Pr(Y = 1|X = x0) > 0.5 ise birinci sınıfa değilse ikinci sınıfa atar.

9

Yukarıdaki grafik X1 ve X2 tahminleyici değişkenlerinden oluşan iki boyutlu bir uzaydaki bir örneği gösteriyor. Turuncu ve mavi halkalar iki farklı sınıfa ait olan training veri seti gözlemlerini gösteriyor. X1 ve X2‘nin her bir değeri için, cevap (response) değişkeninin turuncu veya mavi olma olasılığı farklılık gösteriyor. Bu örnek yapay olarak yaratıldığından verinin nasıl oluşturulduğunu biliyoruz ve X1 ve X2’nin her bir değeri için koşullu olasılık değerlerini hesaplayabiliyoruz. Turuncu alan Pr(Y = orange| X) > 0.5 olduğu alanı, mavi alan ise bu değerin 0.5’ten küçük olduğu alanı gösteriyor. Kesikli mor çizgi ise olasılığın tam olarak 0.5 olduğu yerleri gösteriyor. Bu çizgi Bayes Karar Sınırı (Bayes decision boundary) olarak adlandırılıyor. Bayes Sınıflandırıcısının tahminleri bu sınır tarafından belirleniyor: eğer bir gözlem bu çizginin turuncu tarafına düşerse turuncu sınıfa, mavi tarafında düşerse mavi sınıfa atanıyor.

Bayes Sınıflandırıcısı mümkün olabilecek en düşük test hata oranını üretiyor ve bu da Bayes hata oranı (Bayes error rate) olarak adlandırılıyor. Bu örnekte Bayes hata oranı 0.1304. Sıfırdan büyük çünkü sınıflar birbirleriyle bazı noktalarda çakışıyor. Bayes hata oranı regresyon ortamındaki azaltılamaz hataya denk geliyor. 

K-Nearest Neighbors

Teoride her zaman Bayes sınıflandırıcısını kullanmak isteriz. Ancak gerçek veriler için Y’nin X değerlerine bağlı koşullu olasılık dağılımını bilmeyiz; bu nedenle Bayes sınıflandırıcısını kullanmak imkansızdır. Bu yüzden, Bayes sınıflandırıcısı ulaşılamaz bir altın standarttır ve diğer metotlar bununla kıyaslanarak değerlendirilir. Y‘nin X‘e bağlı koşullu olasılık dağılımını hesaplamaya yönelik birçok yaklaşım var. Bunlardan biri de En Yakın K Komşu Sınıflandırıcısı(K-Nearest Neighbors or KNN)‘dır. Elimizde training ve test veri setleri olsun. Test verisetindeki bir gözlemin hangi sınıfa ait olacağını hesaplamak için KNN algoritması ilk olarak bu test gözlemine training veri setindeki  en yakın K gözlemi  (N0) bulur. Sonrasında bu en yakın K gözlemin sınıf dağılımını hesaplar.

10

Hesapladıktan sonra KNN sınıflandırıcısı Bayes kuralını uygular ve test gözlemini (x0) en yüksek olasılık değerine sahip sınıfa atar. 

11

Yukarıdaki görselle birlikte KNN metodunu açıklamaya çalışalım. Sol tarafta 6 mavi ve 6 turuncu gözlemden oluşan küçük bir training veri seti gösteriliyor. Amacımız x ile gösterilen gözlem için sınıf tahminlemek. Diyelim ki K değerini 3 olarak seçtik. KNN ilk olarak bu gözleme en yakın 3 gözlemi bulacaktır. En yakın üç gözlemden ikisi mavi biri ise turuncu sınıfa ait gözüküyor ve bu gözlem için tahminimiz 2/3 olasılıkla mavi sınıf 1/3 olasılıkla turuncu sınıf olarak hesaplanıyor. Dolayısıyla KNN bu gözlem için mavi sınıf tahminliyor. Sağ tarafta ise KNN metodunu K=3 ile mümkün olan bütün X1 ve X2 değerleri için uyguladık ve KNN karar sınırını (KNN decision boundary) belirledik.

Çok basit bir yöntem olmasına rağmen KNN şaşırtıcı bir şekilde çoğu zaman optimal Bayes Sınıflandırıcısına yakın sınıflandırıcı üretiyor.

Aşağıdaki figür KNN‘in K=10 ile 100 adet gözleme uygulandığında elde edilen karar sınırını gösteriyor. Gerçek dağılım KNN sınıflandırıcısı tarafından bilinmemesine rağmen, KNN karar sınırı Bayes karar sınırına çok yakın. Test  hata oranı KNN ile 0.1363. Bu oran Bayes hata oranı olan 0.1304’e son derece yakın!

K’nin seçimi KNN sınıflandırıcısı üzerinde son derece önemli etkilere sahip. Aşağıdaki görselde K = 1 ve K = 100 iken elde edilen KNN karar sınırını görebilirsiniz. K=1 iken karar sınırı son derece esnek ve Bayes karar sınırında olmayan bazı örüntüler bulmuş. Bu düşük taraflılığa fakat son derece yüksek varyansa sahip bir sınıflandırıcıya denk geliyor. K arttıkça, metot daha az esnek olmaya başlıyor ve doğrusala yakın karar sınırları üretmeye başlıyor. Bu düşük  varyanslı fakat yüksek taraflılıklı sınıflandırıcıya denk geliyor. 

12

Tıpkı regresyonda olduğu gibi, sınıflandırmada da training ve test hata oranları arasında güçlü bir ilişki yok.  K=1 olduğunda KNN training hata oranı 0 oluyor fakat test hata oranı oldukça fazla olabilir. Genel olarak, daha esnek sınıflandırma metotları kullandığımızda training hata oranı azalacaktır ancak test hata oranı azalmayabilir. Aşağıdaki figürde KNN test ve training hataları 1/K‘nin bir fonksiyonu olarak gösteriliyor.  1/K arttıkça yani K azaldıkça, metot daha çok esnekleşiyor. Regresyonda olduğu gibi, tranining hata oranı esneklik arttıkça hep azalıyor. Fakat test hata oranı gene U şeklini gösteriyor: en başta azalıyor(K=10 iken minimum oluyor) fakat belirli bir esneklik noktasından sonra tekrar artmaya başlıyor ve veriye aşırı uydurma (overfitting) gerçekleşiyor.

14

Hem regresyonda hem de sınıflandırmada, esneklik seviyesini doğru seçmek herhangi bir istatistiksel öğrenme metodunun başarısı için kritik derecede önemli. Taraflılık-varyans dengesi, ve bunun sonucunda oluşan U şeklinde test hata oranı bu seçimi zor bir işe dönüştürüyor. Test hata oranını hesaplamak ve optimum esneklik seviyesini seçmek için oluşturulan metotları ileriki yazılarda ayrıntılı olarak ele alacağız.

8 – Üyeleri Aktifleştirmek

Artık ziyaretçileriniz var, fakat problem de burada ortaya çıkıyor. Onlar sadece ziyaretçiler. Ürününüze gelmeleri için bir yol buldunuz ama yaptığınız sadece buysa inanılmaz derecede yüksek hızlarla sitenizden “bounce” edeceklerdir(sekip gidecekler). Asıl amacınız onları aktifleştirmek. Aktivasyon ziyaretçilerin ürününüz ile ilgili sizin istediğiniz bir aksiyonu almalarını sağlama sanatıdır. Aktivasyon ziyaretçileri yalnızca rastgele birşeylere tıklatarak “bounce” etmelerini engellemek değildir. Aktivasyon, sizin önceden belirlediğiniz yapmaları gereken şeyleri yaptıklarında gerçekleşir. Bazı olası aktivasyon hedefleri:

  • Email adreslerini almak
  • Bir hesap yaratmalarını sağlamak
  • Bir şeyi okumalarını sağlamak
  • Bir şeye yorum yapmalarını sağlamak
  • Bir şey paylaşmalarını sağlamak
  • Bir şey almalarını sağlamak
  • Bir şey doldurmalarını sağlamak
  • Bir şey izlemelerini sağlamak
  • Biriyle etkileşime geçmelerini sağlamak
  • Birine arkadaşlık isteği göndermelerini sağlamak
  • Ve daha bir çoğu

Bu aktivasyonlardan bazıları mantıklı görünürken bazıları saçma görünebilir, fakat hedefleriniz tamamen ürününüze bağlı olarak şekillenir. Eğer ürününüz reklamlardan para kazanan bir blog ise o zaman 1,3,4 veya 5. yöntemlere odaklanabilirsiniz. Eğer email adreslerine sahipseniz onlara gelecek makaleler hakkında mesajlar atabilirsiniz. Eğer sitenizde çoktan var olan bir makaleyi okurlarsa yazı kalitenizi görüp daha fazla okumak isteyeceklerdir. Eğer bir makalenin altına yorum yaparlarsa geri gelmeye daha meyilli olurlar, özellikle diğer insanlar cevaplar yazdıkça. Eğer makalenizi Twitter’da paylaşıyorlarsa bu makalenize daha çok okuyucu getirecektir. Bütün bunlar reklam verenlerden daha fazla para talep edebilmenize neden olacaktır. Başka bir ürün tamamen farklı bir hedefe sahip olabilir.

Ayrıca şunu kavramak çok önemli ki daha az hedefe sahip olmak demek onlara daha fazla erişebilme şansı demek. Eğer 5 aktivasyon hedefiniz varsa o zaman bu yazıdaki taktikleri kullanarak herhangi birine verimli bir şekilde erişmek çok zordur. Ürününüzün bir kısmı için yalnızca bir tek ana aktivasyon hedefiniz olmalı.

AKTİVASYON TAKTİKLERİ 01: KARŞILAMA SAYFALARI (LANDING PAGES)

İnsanlar sitenizi ziyaret ettiğinde doğru karşılama sayfası stratejileri onları aktive etme şansınızı ciddi derecede artırır. Bir “karşılama sayfası” ana sayfanızdan farklı bir sayfadır. Ana sayfanızla aynı elementlere sahip olabilirler fakat hepsine değil. Bir karşılama sayfası ürününüzün içerisinde yaratmış olduğunuz, belirli kampanyalara doğru insanları yönlendirdiğiniz bir sayfadır. Neden karşılama sayfası kullanmanızı açıklayan birkaç ayırt edici karakteristik:

KISITLI NAVİGASYON

Birisi belirli bir kampanyadan karşılama sayfanıza gelmişse o zaman navigasyona1 elementlerinin çoğunu gizleyebilirsiniz çünkü bunlar insanların dikkatini dağıtarak sizin belirlediğiniz aksiyonları almalarını engelleyeceklerdir. Karşılama sayfanıza geldiklerine göre zaten ilgi göstermişler dolayısıyla dikkatlerini dağıtmadan iyice odaklamalısınız.

TEK “CALL TO ACTION”(EYLEME ÇAĞRI)

Tıpkı navigasyon elementlerini kısıtladığınız gibi bir karşılama sayfası yalnızca bir call toa2 action içermeli. Birçok call to action karışıklığa sebep olacaktır ve dolayısıyla çok spesifik bir kampanyadan gelmedikleri sürece hiçbir aksiyon almadan gideceklerdir.

MÜNASIP BİR DİL

Karşılama sayfanıza gelen bir insanın nereden geldiğini bildiğinizden deneyimi o insanaa3 göre ayarlayabilirsiniz. Genel ziyaretçi kitlenize hitap etmese bile bu insanlara hitap edecek bir dil kullanmalısınız. Karşılama sayfanızın dili ve görüntüsü hangi kaynaktan geldiklerine göre değişen beklentilerine uygun olmalıdır.

Son zamanlarda çok popüler olan ve kendine has özellikler barındıran spesifik bir karşılama sayfası türü var. Bunlar lansman sayfası(launch page) veya çok yakında(coming soon) sayfasıdır. Lansman sayfasında ürününüz henüz piyasaya çıkmamışken insanlardan email adreslerini alarak ürününüz piyasaya çıktığı anda onları bilgilendirdiğiniz bir sayfadır. Bu tarz bir karşılama sayfası kullanırken aklınızda bulundurmanız gerek bazı şeyler:

BUNU TRAFİK ÇEKMEK İÇİN KULLANIN, AKTİVASYONLAR İÇİN DEĞİL

En iyi trafik çekme zamanlarından biri ürününüz piyasaya çıkmadan önceki zamandır.a4 Eğer lansman sayfanızı başkalarıyla paylaşırlarsa onlara üründen haberdar olacak ilk insanların onlar olabileceğini belirtin, veya ürününüz hakkında tweet atan ilk kişilerden olduklarında ürünü ilk deneyen insanların onlar olabileceğini söyleyin. Bu konuda yaratıcılık size kalmış.

BAŞLIK (HEADLINE) VE ALTBAŞLIK (SUBHEAD) HER ŞEYDİR

Henüz lanse olmadığınızdan karşılama sayfanıza ekleyebileceğiniz fazla bir detaya sahipa5 değilsiniz. Bu şu anlama gelir: başlık ve altbaşlığınız çok önemli. Eğer bu birkaç kelime insanların dikkatlerini çekmiyorsa “bounce” edeceklerdir.

DUYGUSAL GÖRSELLER KULLANMADAN OLMAZ

Başlık ve altbaşlığın yanında, çok duygu dolu bir görsele de ihtiyacınız var. Tam ekrana6 arkaplan imajı kullanımı yaygın bir uygulama. İçeriğinizin azlığına rağmen onlara duygunuzu aktarın.

LİSTENİZİN KÜÇÜLMESİNE İZİN VERMEYİN

Ürününüzün lansmanıyla ilgilenen insanların listesini oluşturduğunuzda listenina7 küçülmesine izin vermemelisiniz. Eğer onlara aylardır mail atmadıysanız ve birden ürününüzün lansmanıyla ilgili bir mail atarsanız, tıklama oranlarınız(click through tare or simply CTR) çok düşük olacak. Onlarla sürekli iletişimde kalarak iletişimi sıcak tutun, veya lasnamnınıza bir aydan fazla süre varsa email adreslerini almayın bile.

LANSMAN SAYFANIZI BETALI.ST VE ERLIBIRD.COM’E GÖNDERİN

Yeni ürünler için arayışta olan insanlardan oluşan ekosistemler mevcut. Lansman sayfanızı bua8 ekosistemlerden olan betali.st veya erlibird.com’a gönderebilirsiniz ve eğer güzel bir lansman sayfanız varsa bu siteler aracılığıyla email listesi oluşturmaya hızlıca başlayabilirsiniz.

Eğer hızlıca karşılama sayfası yaratmaya çalışıyorsanız o zaman unbounce.com gibi bir servisi kullanabilirsiniz, ve eğer lansman sayfası yaratıyorsanız o zaman launchrock.co gibi bir servisi kullanabilirsiniz.

AKTİVASYON TAKTİKLERİ 02: COPYWRITING

Eğer insanların belirli aksiyonlar almasını istiyorsanız, ve “bounce” etmelerini istemiyorsanız, kullandığınız kelimeler sandığınızdan da önemli. Görseller üzerinde takıntılı derecede çalışmalar yapıyoruz ve  bu da copywriting’i geri plana atabiliyor. Görsellerin önemli olduğu kadar, birinden bir şeyi bilmesini istiyorsanız, bir şeyi anlamasını istiyorsanız veya bir şey yapmasını istiyorsanız o zaman büyük ihtimalle kelimeleri kullanmak zorundasınız. Copywriting hakkında birkaç içgörü:

BAŞLIĞINIZ BENZERSİZ DEĞER ÖNERİNİZDEN (UNIQUE VALUE PROPOSITION) BAHSETMELİ

Neden ürününüz benzersiz? Rakiplerinizin yapmadığı ya da yapamadığı neyia9 yapıyorsunuz? Eğer insanlara benzersiz olduğunuzu söylemezseniz o zaman gerçekten benzersiz olduğunuzu varsayacaklardır.

ALTBAŞLIK BENZERSİZ DEĞER ÖNERİNİZİ DAHA DA AÇIKLAMALI

Altbaşlık ana başlığınızın altındaki daha küçük boyutlarda yazdığınız başlıktır.a10 Başlığınızda yazdığınız şeyin neden doğru olduğunu alt başlıklarınızla belirtebilirsiniz. Bunları şüpheleri yok etmek için ve ana başlığı açıklamak için kullanın.

UZUN COPYWRITING PAHALI ÜRÜNLER İÇİN İYİDİR

Eğer 500TL’lik bir şey satıyorsanız o zaman daha uzun bir copywriting’e ihtiyacınız var. Bua11 ziyaretçileri bilgilendirmeye, sorularını cevaplamaya ve genellikle onları aktif kullanıcılara dönüşmeye ikna etmede size yardımcı olacaktır.

KISA COPYWRITING DAHA UCUZ ÜRÜNLER İÇİN İYİDİR

Eğer 20TL’lik bir ürün satıyorsanız uzun bir copywriting yanıtladığından daha fazla soruyaa12 sebep olacaktır. İnsanlara yardım ettiğinden daha fazla akıllarını karıştıracaktır. Düşük maliyetli ürünler için, kısa, net bir copywriting daha iyidir.

FARKLI KİTLELER FARKLI TÜR KELİMELERE CEVAP VERİRLER

Başkasının copywriting stilini tamamen olduğu gibi kopyalamayın. Kelimeleriniz hitapa13 ettiğiniz kitleye göre ayarlanmış olmalı. Eğer doktorlara konuşuyorsanız jargon kullanmalısınız, ya da başka bir kitleye hitap ediyorsanız jargon belkide doğru seçim değildir. Eğer çocukları hedefliyorsanız argo kullanabilirsiniz, ama eğer büyükannelere hitap ediyorsanız argo kullanmamalısınız.

MÜŞTERİ GELİŞTİRMEYİ COPYWRITING’DE KULLANIN

Kitlenizi online olarak araştırırken hangi kelimeleri hali hazırda kullandıklarını görmeyea14 başlayacaksınız. Eğer onların kullandığı kelimeleri copywriting’inizde kullanırsanız o zaman onları aktive etmeyi başarabilirsiniz.

SOSYAL KANITLAR COPYWRITING’DİR

İnsanlar sürü mentalitesiyle hareket ettikleri için diğer insanların referansları onlarıa15 etkileyecektir. Eğer bir şeyi herkes yapıyorsa ben de yapmalıyım diye düşünürüz. Sosyal kanıtlar veya testimoniyaller, ziyaretçilerinizi aktive etmenize yarayan bir tür copywriting’dirler.

MİKRO KOPYALARI (MICROCOPY) UNUTMAYIN

Bunlar ziyaretçilerin arayüzü nasıl kullanacaklarına dair ipuçları sunan küçük kutular vea16 yazılardır. Doğru yerde küçük ipuçları insanların arayüzünüzü öğrenmelerini kolaylaştırır. Kafası karışan ziyaretçiler genellikle yapmalarını istediğiniz şeyi yapmazlar.

Copywriting hakkında daha fazla öğrenmek isterseniz:

Copyhacker.com

AKTİVASYON TAKTİKLERİ 03: CALLS TO ACTION (EYLEME ÇAĞRI)

Şimdiye kadar birkaç kere bahsettik bundan. Birine istediğiniz bir şeyi yaptırmanın en iyi yollarından biri onlara net bir “call to action”(eyleme çağrı) vermektir. Hiçbir şeyi onların hayal gücüne bırakmayın. Nereye tıklayacaklarını söyleyin ve tıklayacakları butonu da belirgin yapın. Onlara kimi arayacaklarını söyleyin ve telefon numarasını belirginleştirin. Ziyaretçileri onlara ne yapmalarını istediğinizi söyleyerek aktive etmeye çalışın. Birkaç güzel örnek:

AKTİVASYON TAKTİKLERİ 04: ALIŞTIRMA(ONBOARDING)

İnsanlar sitenize geldiklerinde bu tıpkı bilmediğiniz bir şehrin ortasına haritasız ve yön bilgisiz bir şekilde bırakılmanız gibidir. İşiniz bu insanlara yön vermek ve nereye gitmelerini istiyorsanız oraya yönlendirmek. Bunun en iyi yönemlerinden biri alıştırma(onboarding) yönetimidir. Onboarding ekranın üstünde konumlanmış görsel yönlendirmeler olabilir veya ziyaretçileri bir sayfadan başka bir sayfaya aktaran sayfalar dizisi olabilir. Onboarding’i dijital bir tur olarak düşünün. Açıklayıcı bir video onboarding stratejinizin bir parçası olabilir.

İnsanlar sabırlı değildirler, ve ürününüzü nasıl kullanmaları gerektiğini bulacak kadar önemsemiyorlar. Eğer ziyaretçileri aktifleştirmek istiyorsanız, onların belirli aksiyonları almasını istiyorsanız, o zaman onboarding tecrübenizi dikkatlice tasarlamalısınız.

AKTİVASYON TAKTİKLERİ 05: OYUNLAŞTIRMA(GAMIFICATION)

Oyun oynamakla ilgili bir şey var: insan beyniyle bütünleşik olması. İlerlemeyi, ödüller almayı, skor tahtasında sıralanmayı, görevleri bitirmeyi, yükselmeyi, bunu yaparken zevk almayı seviyoruz. Gamification oyun mekanizmalarını ürününüz içerisine yerleştirdiğinizde oluşur, ve bu üyeleri aktive etmek için kullanılabilir. Gamification bir insanın normalde yapmayacağı şeyleri yapması için kullanılabilir. Birkaç örnek:

İLERLEME(PROGRESS)

İnsanlara oluşturdukları profillerin ne oranda dolu olduğunu söylemek a17çok yaygın bir uygulama. Bu bizi bilgilerimizi %100 doldurmamıza iter çünkü bitmeyen, eksik kalan şeylerden nefret ederiz. Yalnızca bilgileri alırken bir ilerleme çubuğu ekleyin ve işte ürününüzü oyunlaştırdınız.

ÖDÜLLER

Ödüller önemlidir, anlamsız ya da absürd olsalar bile. Eğer ürününüz içerisinde bir şeyia18 ödül olarak verebiliyorsanız o zaman insanların belirli aksiyonları almaları için oyunlaştırılmış teşvikler yaratmışsınız demektir. Foursquare’i düşünün.

SKOR TAHTASI

Birine kendi skorunu göstererek rekabet etmesini tetikleyebilirsiniz. Skor tahtalarıa20 insanları belirli aksiyonlar almaları için aktive edebilir.

AKTİVASYON TAKTİKLERİ 06: FİYATLANDIRMA STRATEJİLERİ

Birine bir şeyi aldırtmak gerçekten eşsiz bir tür aktivasyon. Bir ziyaretçiye belirli bir aksiyonu aldırtıyorsunuz, ve bu aksiyon bir satın alma. Bu konuda bir sürü bestpractice mevcut. Hepsi size uymayabilir ama bazıları mutlaka uyacaktır.

MÜKEMMEL FİYAT AYRIMI(PERFECT PRICE DISCRIMINATION)

İnsanlara bir şeyi satın aldırtmak için fiyatlandırma çok önemli. Müşterinin satın almaa24 gücüne göre değişik fiyatlandırmalar yapmaya mükemmel fiyat ayrımı denir.

ÇOKLU KATMAN

Satın almaları aktive etmek için diğer bir popüler strateji 3 fiyatlandırma aşamasıa21 olmasıdır. Daha pahalı bir opsiyonun olduğu gerçeği başlı başına size paranızı boşuna harcamadığınızı ve güzel bir satın alma yaptığınızı hissettirebilir. Opsiyonlar insanlara satın almaları için güven verir.

FİKİR VERİCİ KATMAN ADLANDIRMASI

Fiyat katmanlarınızı altın, gümüş ve bronz gibi muğlak kelimelerle adlandırırsanız, oa22 zaman insanlara onlar için hangi katmanın uygun ve iyi olduğunu anlamalarına yardım etmemiş olursunuz. Katmanları, örneğin, “Başlangıç”, “Profesyonel”, veya “Takım” olarak adlandırırsanız o zaman insanlara doğru katmanda olduklarına dair güven verebilirsiniz.

BEDAVA DENEME SÜRÜMLERİ

İnsanlar paralarıyla geri alınamaz hatalar yapmaktan korkarlar. Eğer onlara geri paraa23 garantisi verirseniz, veya bir tür bedava deneme sürümleri verirseniz, o zaman riski onlardan alıp kendinize taşırsınız. Riski onlardan aldığınız için insanlar daha rahat davranabilirler.

İNDİRİM KODLARI

En güçlü kuvvetlerden biri indirim kodlarıyla birine satın alma yaptırmaktır. Fakat indirima24 kodlarını daha efektif yapan bir numara vardır. Eğer bu kodlara zaman limiti koyarsanız insanları satın alma kararı yapmaya zorlarsınız. Udemy bu tarz bir aktivasyon taktiğinin mükemmel bir örneği. İnsanlar düzenli aralıklarla belirli bir zaman için geçerli olan indirim kodları içeren mailler gönderirler.

PAKETLEME (BUNDLING)

İnsanlara satın alma yaptırmanın bir diğer yöntemi de ürününüzü diğer ürünlerlea25 paketleme yöntemidir. Eğer insanları değer ile çevrelerseniz o zaman satın alma kararı vermeye daha meyilli olurlar. Hacker Bundle bu aktivasyon taktiğini kullanan güzel örneklerden biri.

BU YAZININ ÖZETİ

  • Ürününüze ziyaretçi çekmek yeterli değil. Onları aktifleştirmek gerekiyor.
  • Aktivasyon, birinin ürününüzün başarısı için gerekli olan bir aktivasyonu almasıyla gerçekleşir.
  • Ürününüzün belirli bir kısmı için yalnızca bir aktivasyon hedefiniz olmalı.
  • Aktivasyon hedefleri ürününüze bağlı olarak değişebilir.
  • 6 aktivasyon taktiğinden bahsettik:
    1. Karşılama sayfaları
    2. Copywriting
    3. Eyleme Çağrı (Call to Action)
    4. Alıştırma (Onboarding)
    5. Oyunlaştırma (Gamification)
    6. Fiyatlandırma Stratejileri